Майкл браун

Відео: Вбивство в Міссурі: Майкл Браун міг брати участь в пограбуванні

Майкл Стюарт Браун (Англ. Michael Stuart Brown- 13 квітня 1941 року, Бруклін, Нью-Йорк) - відомий американський лікар і біохімік. За дослідження спадкової гіперхолестеринемії і відкриття рецептора ліпопротеїнів низької щільності разом з Джозефом Голдштейн отримав Нобелівську премію з медицини і фізіології в 1985 році.
Майкл Браун закінчив Університет Пенсільванії в 1962 і медичну школу цього ж університету в 1966. З тих пір працює в Південно-Західному медичному центрі (Університет Техасу) в області метаболізму холестерину. Автор багатьох статей в провідних світових біологічних і медичних журналах. У 1985 році отримав Нобелівську премію за відкриття рецептора ліпопротеїнів низької щільності.
Основні наукові публікації:
[1] Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1 974 Jul 5- 185 (4145): 61-3.
[2] Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. +1975 Nov- 6 (3): 307-16.
[3] Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan- 7 (1): 85-95.
[4] Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16- 191 (4223): 150-4.
[5] Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct- 9 (2): 195-203.
[6] Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell. 1976 Dec- 9 (4 PT 2): 663-74.
[7] Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1 977 Mar- 10 (3): 351-64.
[8] Genetics of the LDL receptor: evidence that the mutations affecting binding and internalization are allelic. Cell. 1 977 Nov- 12 (3): 629-41.
[9] A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22-29- 270 (5639): 695-9.
[10] Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov- 15 (3): 919-33.
[11] Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21- 279 (5715): 679-85
[12] LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell. 1980 Jul- 20 (3): 829-37.
[13] Regulation of plasma cholesterol by lipoprotein receptors. Science. Тисяча дев`ятсот вісімдесят один May 8- 212 (4495): 628-35.
[14] Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. Тисяча дев`ятсот вісімдесят один May- 24 (2): 493-502.
[15] Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. Тисяча дев`ятсот вісімдесят дві Oct- 30 (3): 715-24
[16] Independent pathways for secretion of cholesterol and apolipoprotein E by macrophages. Science. 1983 Feb 18- 219 (4586): 871-3.
[17] Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar- 32 (3): 663-7


[18] The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell. 1983 Mar- 32 (3): 941-51.
[19] Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May, 33 (1): 273-85
[20] Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell. +1984 Apr- 36 (4): 835-45.
[21] Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. +1984 Apr 12-18- 308 (5960): 613-7.
[22] Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. +1984 Jun- 37 (2): 577-85.
[23] HMG CoA reductase: a negatively regulated gene with unusual promoter and 5 `untranslated regions. Cell. +1984 Aug- 38 (1): 275-85.
[24] The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. +1984 Nov- 39 (1): 27-38
[25] Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11- 227 (4683): 140-6.
[26] The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17- 228 (4701): 815-22.
[27] Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17- 228 (4701): 893-895
[28] Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May- 41 (1): 249-58.
[29] Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985 Jul- 41 (3): 735-43.
[30] 5 `end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug- 42 (1): 203-12.
[31] Scavenger cell receptor shared. Nature. 1985 Aug 22-28- 316 (6030): 680-1.
[32] A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4 232 (4746): 34-47.
[33] The JD mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors Cell. 1986 Apr 11- 45 (1): 15-24.
[34] Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6- 232 (4755): 1230-7.
[35] Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13- 48 (5): 827-35.


[36] 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27- 48 (6): 1061-9.
[37] Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987 Apr 23-29- 326 (6115): 760-765
[38] Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science. Тисяча дев`ятсот вісімдесят-вісім Mar 11- 239 (4845): 1277-81.
194674 query_hl = 42 itool = pubmed_DocSum Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13- 62 (1): 81-8.
[39] Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30- 250 (4985): 1273-5
[40] Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. Тисяча дев`ятсот дев`яносто один May 3 65 (3): 429-34.
[41] cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1 / RAM1. Cell. 1991 Jul 26- 66 (2): 327-34.
[42] Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18- 70 (6): 1049-57.
[43] Koch`s postulates for cholesterol. Cell. 1992 Oct 16- 71 (2): 187-8.
[44] cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell. Тисячу дев`ятсот дев`яносто три Jun 18- 73 (6): 1091-9
[45] SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. Тисячу дев`ятсот дев`яносто три Oct 8- 75 (1): 187-97.
[46] Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11- 76 (5): 865-73.
[47] SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8- 77 (1): 53-62
[48] Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28- 85 (7): 1037-46
[49] Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 1996 Nov 1 87 (3): 415-26.
[50] The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1 997 May 2 89 (3): 331-40.
[51] Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. +1999 Dec 23- 99 (7): 703-12.
[52] Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18- 100 (4): 391-8.
[53] Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4 102 (3): 315-23.
[54] Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23- 110 (4): 489-500.
Поділися в соц. мережах:

Увага, тільки СЬОГОДНІ!
По темі: